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Summary

Faults have been identified beyond the Earth on many other planets, satellites, and
asteroids in the solar system, with normal and thrust faults being most common.
Faults on these bodies exhibit the same attributes of fault geometry, displacement–
length scaling, interaction and linkage, topography, and strain accommodation as
terrestrial faults, indicating common processes despite differences in environmen-
tal conditions, such as planetary gravity, surface temperature, and tectonic driving
mechanism. Widespread extensional strain on planetary bodies is manifested as
arrays and populations of normal faults and grabens having soft-linked and hard-
linked segments and relay structures that are virtually indistinguishable from their
Earth-based counterparts. Strike-slip faults on Mars and Europa exhibit classic
and diagnostic elements such as rhombohedral push-up ranges in their echelon
stepovers and contractional and extensional structures located in their near-tip quad-
rants. Planetary thrust faults associated with regional contractional strains occur as
surface-breaking structures, known as lobate scarps, or as blind faults beneath an
anticlinal fold at the surface, known as a wrinkle ridge. Analysis of faults and fault

Planetary Tectonics, edited by Thomas R. Watters and Richard A. Schultz. Published by Cambridge
University Press. Copyright c© Cambridge University Press 2009.

456



P1: aaa Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK632-10 CUUK632-Watters ISBN: 978 0 521 76573 2 June 26, 2009 21:33

Fault populations 457

populations can reveal insight into the evolution of planetary surfaces that cannot
be gained from other techniques. For example, measurements of fault-plane dip
angles provide information on the frictional strength of the faulted lithosphere. The
depth of faulting, and potentially, paleogeothermal gradients and seismic moments,
can be obtained by analysis of the topographic changes associated with faulting.
Because the sense of fault displacement (normal, strike-slip, or thrust) is related to
the local and regional stress states, fault dip angle and displacement characteristics
can provide values for crustal strength and magnitudes of stress and strain in map
view and at depth while the fault population was active. Statistical characterization
of fault-population attributes, such as spacing, length, and displacement, provides
an exciting and productive avenue for exploring the mechanical stratigraphy, fault
restriction, partitioning of strain between small and large faults, and the processes
of fault growth over a wide range of scales that are useful for defining or testing
geodynamic models of lithospheric and planetary evolution.

1 Introduction

Faults on the Earth or other planetary bodies rarely occur as solitary entities. Instead,
they occur as members of a set, array, network, or population. In a population, faults
display wide variation in their primary characteristics, such as length, displacement,
and spacing. However, these characteristics do not occur at random. All of the
faults’ characteristics depend on one another, so that knowledge of one or two
key characteristics can provide insight into the values and relationships among the
others.

In this chapter we first define the common fault geometries and then review
the stress states in a planetary lithosphere that are associated with faults, using
the conditions in the Earth’s crust as a reference. We then briefly explore some
of the main characteristics of fault populations, again using examples from Earth
since these have been investigated in the most detail. Because topographic data
are becoming more widely available for planetary fault populations, we show
how measurements of the structural topography generated by faulting can reveal
information about properties of the faults and of the faulted lithosphere. Last, we
show how strains can be calculated for planetary fault populations, and end with a
summary of challenges for future work on these exciting issues.

2 Faulted planetary lithospheres

Faults have been documented on nearly every geologic surface in the solar system.
Normal faults and grabens are probably the most common and are found on Mercury
(Watters et al., Chapter 2), Venus (McGill et al., Chapter 3), the Moon (Watters and
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Johnson, Chapter 4), Mars (Golombek and Phillips, Chapter 5), Europa, Ganymede,
and several smaller icy satellites of the outer planets including Tethys, Dione,
and Miranda (Collins et al., Chapter 7). Thrust faults have been identified on
Mercury, Venus, the Moon, and Mars (e.g., Suppe and Connors, 1992; Williams
et al., 1994; Solomon et al., 2008; and chapters in this volume). Strike-slip faults
have been identified on Mars (e.g., Schultz, 1989; Okubo and Schultz, 2006b;
Andrews-Hanna et al., 2008) and on the icy satellite Europa that shows large
lateral displacements, such as those found at terrestrial transform plate boundaries
(Schenk and McKinnon, 1989; Kattenhorn and Marshall, 2006). Individual dilatant
cracks (joints) and deformation bands (Aydin et al., 2006; Fossen et al., 2007) have
both been identified on Mars (Okubo and McEwen, 2007; Okubo et al., 2008a)
and perhaps Europa (Aydin, 2006), and the presence of subsurface igneous dikes
has been inferred on Mars from surface topographic data (Schultz et al., 2004). In
this chapter we focus on faults on the planets and satellites.

2.1 Definition and geometries of faults

The terminology of geologic structures such as joints, faults, and deformation
bands has recently been reassessed and streamlined by Schultz and Fossen (2008).
Following this terminology, a fault is a sharp structural discontinuity defined by its
slip planes (surfaces of discontinuous displacement) and related structures includ-
ing fault core and damage zones (e.g., cracks, deformation bands, slip surfaces,
and other structural discontinuities) that formed at any stage in the evolution of the
structure. Commonly associated structures such as drag or faulted fault-propagation
folds are associated elements not included in the term fault, although clay smearing
or other early forms of strain localization may be included.

Faults rarely occur as single entities but occur in association with other faults
(and other structures such as joints, folds, anticracks, and deformation bands)
having a range of lengths, offsets, and other related characteristics. A fault set
is a collection of faults that have some element in common, such as age, length,
spacing, type, or orientation. A fault array is a fault set in which all faults are
genetically related to each other (i.e., same deformational event or rock type).
A fault zone is a narrow array of relatively closely spaced faults having similar
strikes. A fault system is a spatially extensive array in which the faults interact
mechanically. A fault population is a system comprised of all faults having the
full range of lengths, spacings, displacement distributions, and other characteristics
that record the progressive evolution of the faulted domain. Populations of faults, as
well as joints (Segall, 1984a) and deformation bands (Fossen et al., 2007), are said
to be self-organizing (e.g., Sornette et al., 1990) in the sense that their physical,
geometric, and statistical characteristics evolve with increasing deformation of the
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Figure 10.1. Block diagram showing the main geometric characteristics of a
surface-breaking fault population. Although normal faults are shown, the descrip-
tions are also applicable to surface-breaking strike-slip and thrust faults on the
Earth and other planets and satellites.

region (e.g., Cladouhos and Marrett, 1996; Ackermann et al., 2001; Cowie et al.,
1995).

Fault systems are composed of “isolated faults” and “segmented faults” (Fig-
ure 10.1). Isolated faults are defined as faults showing no evidence of significant
mechanical interaction with other nearby or surrounding faults (Willemse, 1997;
Gupta and Scholz, 2000a; Soliva and Benedicto, 2004), i.e., without relay zones
or breaching (e.g., Davison, 1994) allowing transfer of displacement to another
fault. A segmented fault is composed of two or more non-colinear overlapping
fault segments that are arranged in echelon patterns (see Davison, 1994). Fault seg-
ments are separated by relay zones, or stepovers (Aydin, 1988), which are defined
as the rock volume between overlapping (echelon) fault tips in which the fault
segments interact through their stress fields. This interaction results in a transfer
of displacement between the fault segments, an increase of fault-end displacement
gradient that is accommodated by continuous deformation, and distortion of the
rock volume located between the two fault segments. A fault can be segmented
in three dimensions (3-D; vertically and horizontally, Figure 10.1), i.e., containing
vertical, horizontal and obliquely oriented relay zones leading to very simplistic
(elliptical or rectangular shapes) to more complex fault geometries (Kattenhorn
and Pollard, 1999, 2001; Walsh et al., 2003; Benedicto et al., 2003). A segmented
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Table 10.1. Effective lithostatic stress gradients and rock-mass depths for
terrestrial planets

Planet/Satellite Gravity, g Dry lithostat σv Wet lithostat σv Depth of rock-mass
(m s −2) (MPa km−1) (MPa km−1) zone, z0 (km)

Mercury 3.78 10.6 – 2.6–5.2
Venus 8.8 24.6 – 1.1–2.2
Earth 9.8 – 17.6 1–2
Moon 1.62 4.5 – 6–12
Mars 3.7 10.4 6.7 2.6–5.3

Assumes σ v = ρ(1 – λ)gz with ρ = 2800 kg m–3 (dry crustal rock). Values calculated and
shown where dry or wet conditions can be reasonably inferred. Approximate values for
z0 for Mercury, Venus, Moon, and Mars for the depth range of 1–2 km calculated for
depths on those bodies corresponding to σ v on Earth for dry basalt taken to be at 1–2 km
depths.

fault can therefore be composed of fault segments that are breached (connected
by cross-faults, or “hard-linked”) or not (echelon or “soft-linked”). A linked (for-
merly segmented) fault is called “kinematically coherent” (Willemse et al., 1996)
because it acts as a single mechanical break.

2.2 Stress states and faulting

The reference stress state for a planetary lithosphere can be inferred from measure-
ments of in situ stress within the Earth’s crust. Subsurface stresses are, in general,
compressive (e.g., McGarr and Gay, 1978; Brown and Hoek, 1978; Engelder,
1993, pp. 10–15; Plumb, 1994; Zoback et al., 2003), except perhaps for rare excep-
tions due to subsurface inhomogeneities (e.g., lava tubes, faults) or for locations
close to the surface, where one of the horizontal stresses may be tensile. The
vertical stress magnitude, or “lithostat,” is given by σ v = ρ(1 – λ)gz, in which ρ

is the average density of rock, λ is the Hubbert-Rubey pore-fluid pressure ratio
with λ = Pwater/ρrock (Hubbert and Rubey, 1959; Suppe, 1985, p. 300; Price and
Cosgrove, 1990, p. 68; Weijermars, 1997, pp. 42, 98–99), g is gravitational accel-
eration at the planetary surface, and z is the depth below the surface (McGarr and
Gay, 1978; Zoback et al., 2003). Using values of ρ = 2800 kg m–3 and either dry or
hydrostatic pore-water conditions (λ = 1/ρrock ∼ 0.4), as would be the case for the
effective principal stresses in the Earth (e.g., Suppe, 1985; Engelder, 1993) and,
perhaps at times, for Mars, the calculated lithostats are listed in Table 10.1. These
gradients in effective vertical stress σ v are well documented for the Earth (e.g.,
Brown and Hoek, 1978; McGarr and Gay, 1978).



P1: aaa Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK632-10 CUUK632-Watters ISBN: 978 0 521 76573 2 June 26, 2009 21:33

Fault populations 461

Classical rock mechanics treatments suggest values for the minimum horizon-
tal stress of approximately one-third of the lithostatic value based on the Poisson
response of an ideal intact linearly-elastic unconfined rock in the horizontal direc-
tion (e.g., Jaeger and Cook, 1979; Jaeger et al., 2007; see Suppe, 1985, for the “Earth
pressure coefficient”). Measurements of in situ stress in the Earth’s crust demon-
strate instead, however, that the magnitudes of the horizontal principal stresses are
controlled by the frictional resistance of the fractured planetary lithosphere (e.g.,
Zoback et al., 2003). As originally developed by Goetz and Evans (1979) and
Brace and Kohlstedt (1980) in the context of lithospheric strength envelopes for
the Earth, the horizontal principal stresses are limited to about one-third to one-fifth
of the dry (λ = 0) or effective (λ > 0) lithostat, with greater principal-stress dif-
ferences (or principal-stress ratios) leading to faulting (see Kohlstedt et al., 1995,
and Kohlstedt and Mackwell, Chapter 9). As a result, the dry or effective principal
stresses that drive faulting are all compressive (e.g., Jaeger et al., 2007, p. 74), as
was shown more than a half-century ago in E. M. Anderson’s fault classification
scheme (Anderson, 1951; Figure 10.1), so that all three types of faults – normal,
strike-slip, and thrust – can be regarded as compressive structures that also shear
(see also Sibson, 1974; Marone, 1998; Scholz, 1998).

The critical (minimum) value of the remote (dry or effective) principal stresses
for faulting of a planetary lithosphere to be achieved is then given most simply by
the Coulomb criterion for frictional slip (Jaeger and Cook, 1979, p. 97; Price and
Cosgrove, 1990, p. 26)

σ1 = σc + qσ3, (10.1)

in which σ c is the unconfined compressive strength of the rock mass (Bieniawski,
1989; Schultz, 1995, 1996) and q = ([μ2 + 1]0.5 +μ)2 with μ being the average
static (or maximum; see Marone, 1998) friction coefficient of lithospheric rocks.
Typical values of static and dynamic friction coefficients for crustal rocks on the
Earth are μ= 0.2–0.8 (Paterson and Wong, 2005, pp. 166–170; Jaeger et al., 2007,
p. 70), with strength given by values of static friction at the high end of the range.
Setting μ = 0.6 (corresponding to a representative angle of friction for the rock
of ϕ = tan–1(μ) = 31◦; see Sibson, 1994), q = 3.12 and σ c = 3.5 MPa (assuming a
typically small value of cohesion for the near-surface rock mass of C0 = 1.0 MPa;
see Hoek, 1983; Schultz, 1993, 1996; Hoek and Brown, 1997). Typical ranges of
friction coefficient μ of 0.4–0.85 lead to values of ϕ = 22–40 and q = 2.2–4.68,
respectively. For a given value of vertical stress or depth, the maximum (dry or
effective) compressive principal stress must be at least 2–5 times larger than the
value of the minimum compressive principal stress for normal, strike-slip, or thrust
faulting to initiate in a planetary lithosphere. This critical value defines the brittle
(Byerlee) frictional strength of planetary rocks having icy or silicate compositions
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(e.g., Sibson, 1974; Brace and Kohlstedt, 1980; Kohlstedt et al., 1995; Scholz,
2002, pp. 146–155; Kohlstedt and Mackwell, Chapter 9).

The fault dip angle is related to the friction coefficient (or angle) of the faulted
planetary lithosphere. Noting that q = tan2 (θopt), the optimum dip angle θopt is
given by (e.g., Jaeger and Cook, 1979)

θopt =
(

45◦ + φ

2

)
=

⎡
⎣90◦ −

tan−1
(

1
μ

)
2

⎤
⎦ , (10.2)

where θopt is the angle between σ 1 and the normal to the optimum slip plane. This
relationship assumes that one of the (dry or effective) principal stresses is vertical,
which is a common occurrence in the Earth (e.g., McGarr and Gay, 1978) and
likely in other planets and satellites as well. For a friction coefficient of μ = 0.6
(corresponding to a friction angle ϕ = 30.5◦), the optimum fault dip angle for a
normal fault would be 60.5◦; a thrust fault would be oriented according to σ 1

being horizontal, resulting in an optimum dip angle of 29.5◦. These values are in
accord with the measured dip angles of many large steeply dipping terrestrial faults
(Sibson, 1994) that may be modified (either steepened or shallowed) during the
progressive deformation of a faulted domain.

At the planetary surface and shallow subsurface, however, faults can dip at initial
angles that are steeper than the optimum angle (e.g., McGill and Stromquist, 1979;
Gudmundsson, 1992; Moore and Schultz, 1999; McGill et al., 2000; Ferrill and
Morris, 2003) because of the pressure and depth dependence of frictional strength
in the near surface (e.g., Hoek, 1983; Schultz, 1995) and differences in the initial
failure mechanism of near-surface strata (e.g., Gudmundsson, 1992; Schultz, 1996;
Peacock, 2002; Crider and Peacock, 2004). Sometimes called the “rock-mass zone”
(Schultz, 1993), this region of locally greater effective friction coefficient extends
from the planetary surface down to depths of ∼1–2 km on the Earth, corresponding
approximately to depths on the planets and satellites where the vertical principal
compressive stress σ 1 < 10–35 MPa (with specific values depending on the dry or
wet rock density; see Table 10.1). Within this near-surface zone, rock-mass strength
is well approximated by the Hoek-Brown criterion (Hoek and Brown, 1980; Hoek,
1983, 1990; Brady and Brown, 1993, pp. 132–135; Franklin, 1993) which is given
by

σ1 = σ3 +
√

mσcσ3 + sσ 2
c , (10.3)

in which m and s are non-dimensional parameters that describe the friction and
degree of fracturing of the rock mass and σ c is the unconfined compressive strength
of the intact planetary lithospheric rock material (i.e., its lithology such as basalt
or tuff). Values of the parameters are given by the sources cited above, as well as
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Schultz (1993, 1995, 1996); the criterion has been applied to planetary faulting by
Schultz (1993, 1995, 1996, 2002), Schultz and Zuber (1994), Schultz and Watters
(1995), Ferrill and Morris (2003), Schultz et al. (2004, 2006), Okubo and Schultz
(2004), Neuffer and Schultz (2006), and Andrews-Hanna et al. (2008). Stress
models for prediction of the types and locations of planetary faults that do not
incorporate a criterion for rock-mass strength such as Equation (3) (e.g., Banerdt
et al., 1992; Freed et al., 2001; Golombek and Phillips, Chapter 5) potentially can
correctly predict the observed faults (especially strike-slip) when the lithospheric
strength is explicitly included (Schultz and Zuber, 1994; Andrews-Hanna et al.,
2008).

In structural geology, the change in length �L between two points in a rock
normalized by the original length L0 between them is referred to variously as the
extension, elongation, linear strain, or normal strain. The sign of this quantity,
computed by using εn = �L/L0, is positive for an increase in length (extension)
or negative for a length decrease (contraction or shortening). In this chapter we
refer to εn as the normal strain (a component of the local strain tensor), following
the convention from rock mechanics (e.g., Means, 1976, p. 152; Jaeger et al.,
2007, p. 43), noting that it applies to penetrative deformation at the particular scale
of interest (e.g. Pappalardo and Collins, 2005). For geometrically sparser fault
populations, the normal strain εn in a given direction (i.e., the horizontal planetary
surface normal to fault strike) can be calculated by summing the geometric fault
moments as described in Section 5 (see Equation 10.12) below.

Anderson’s (1951) classification scheme for faults succinctly associates the three
main fault types (normal, thrust and strike-slip) with the 3-D regional stress states
needed to drive the required sense of slip along optimally oriented surfaces. Ander-
son’s fault classification scheme is shown in Figure 10.2. With one principal stress
vertical (σ v), the other two are necessarily horizontal (σ H and σ h; e.g., McGarr and
Gay, 1978; Angelier, 1994). In order of decreasing compressive stress magnitude,
the dry or effective principal stresses in a planetary crust are σ 1 > σ 2 > σ 3 and
σ H > σ h. The fault’s strike is defined to be parallel to σ 2 (the intermediate princi-
pal stress; Sibson, 1974), using the assumption that only the extreme (maximum
and minimum) principal stresses are important for driving frictional sliding in a
planetary lithosphere (σ 1 and σ 3; e.g., Paterson and Wong, 2005, pp. 35–38). This
correspondence between fault strike and σ 2 is commonly observed in nature when
the magnitude of normal strain parallel to the fault, ε2, is negligibly small (i.e.,
a two-dimensional strain field; see Reches, 1978, 1983; Aydin and Reches, 1982;
Krantz, 1988, 1989; Figure 10.2).

For normal faulting, the maximum dry or effective principal stress σ 1 is oriented
vertically, denoted the vertical stress σ v; with the minimum remote dry or effec-
tive principal stress σ h being horizontal (σ 3), the remote stress state for normal
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Figure 10.2. The Anderson (1951) classification scheme for faults based on the
orientations of the remote (regional) principal stresses relative to the planetary
surface. The principal normal strains are also shown (right-hand column); note
the change in sign of normal strain ε1 for extension (normal faults) and ε3 for
strike-slip and contraction (thrust faults). This normal strain, with the opposite
sense of the other two, is the “odd axis” of Krantz (1988). Its extensional sense
is required when a rock mass deforms with constant volume, as is approximately
the case for planetary lithospheres.

faulting and grabens in a planetary crust is given for typical values of friction
coefficient (μ = 0.6–0.85) by σ v = 3–5 σ h. For thrust faulting, on the other hand,
σ 1 is horizontal and σ 3 is vertical, so that σ H = 3–5 σ v. For strike-slip faulting, σ 2

is vertical, so that σ 1 = σ H = 3 –5 σ h. Fault sets on a planetary surface are prima
facie evidence that the state of stress in a planetary crust was given approximately
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by one of these three expressions. The magnitudes of the resulting strains, however,
are related to the magnitude of displacement that has accumulated along the faults
in the population, as well as the sizes and spatial relationships between the faults
(e.g., Segall, 1984a; Gupta and Scholz, 2000b; Schultz, 2003a; see Section 5).

3 Main characteristics of fault populations

The analyses of fault populations began with Earth examples, so the first salient
works and main references cited here are for terrestrial fault systems. The charac-
teristics and processes of fault system development (e.g., McGill and Stromquist,
1979; Davison, 1994) described in this section are observed as well in planetary
fault systems (e.g., Muehlberger, 1974; Lucchitta, 1976; Sharpton and Head, 1988;
Banerdt et al., 1992; McGill, 1993; Schultz and Fori, 1996; Mège and Masson,
1996; Schultz, 1991, 1997, 1999, 2000a,b; Koenig and Aydin, 1998; Mangold
et al., 1998; Watters et al., 1998; Wilkins and Schultz, 2003; Okubo and Schultz,
2003, 2006b; Goudy et al., 2005; Hauber and Kronberg, 2005; Kattenhorn and
Marshall, 2006; Kiefer and Swafford, 2006; Knapmeyer et al., 2006), although
the rheologies and characteristics of the lithospheric strength envelopes for those
bodies differ in detail from the those for the Earth (see Kohlstedt and Mackwell,
Chapter 9).

3.1 Fault system morphology

A fault population can be quantitatively described by using a series of geometrical
attributes inherent to the fault pattern (see Figure 10.1). Fault displacement, i.e., the
net slip along the fault (also called the fault “offset”), is an important geometrical
attribute since it provides information on fault kinematics and the amount of strain
accommodated by the fault. In the absence of three-dimensional data on the fault
plane (e.g., Nicol et al., 1996; Willemse, 1997; Kattenhorn and Pollard, 2001;
Wilkins and Schultz, 2005), the continuous measure of fault displacement along
fault trace (the fault’s “displacement distribution” or “displacement profile”) can be
obtained by measuring the displacement of preexisting markers, such as bedding
or impact craters, either in a horizontal plane (such as the planetary surface) or in a
vertical plane (such as a cross-sectional exposure of the fault; Wilkins and Gross,
2002). On the Earth and other planets and satellites, with many surface-breaking
faults but rarer cross-sectional exposures, displacement distributions along the
faults’ horizontal traces (called the fault “length”) are more commonly measured
and reported. In addition, however, displacement distributions are generally easier
to obtain along normal faults, especially along their horizontal lengths (e.g., Dawers
et al., 1993), than along strike-slip faults (e.g., Peacock and Sanderson, 1995), for
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which horizontal markers would be needed, or thrust faults (e.g., Davis et al., 2005),
where folding and related deformation can obscure the displacement distribution.
This is the reason why fault population analyses have been emphasized for normal
faulting environments and also why the following text in this chapter will be based
on normal fault populations.

Three other main geometrical attributes used in fault population studies are
length, spacing and overlap (Figure 10.1). The length of a fault is defined by the
distance along the fault trace between the fault tips (where fault offsets decrease to
zero) measured along a horizontal surface. Fault spacing is the horizontal distance
normal to fault strike between two faults. Fault overlap is the horizontal distance
parallel to fault strike along which two faults overstep (i.e., in the relay ramp
between two normal faults (e.g., Davison, 1994; Moore and Schultz, 1999; Schultz
et al., 2007) or thrust faults (Aydin, 1988; Davis et al., 2005), or the length of a pull-
apart or push-up range (Aydin and Nur, 1982; Schultz, 1989; Aydin and Schultz,
1990; Aydin et al., 1990) along a pair of en-echelon strike-slip faults). These
geometrical attributes are important for quantitatively describing the geometry of
both the relay zones and the overall fault population itself.

Much attention has been devoted to potential measurement biases on these
geometrical attributes (e.g., Marrett et al., 1999; Ackermann et al., 2001; Soliva
and Schultz, 2008; and references therein). Two classes of bias can be defined
as “natural bias” and “detection bias.” Natural bias results from natural geologic
processes, such as fault scarp erosion and basin in-filling, that lead to underestimates
of fault length, displacement, overlap, and spacing. Detection biases are inherent
to the particular data acquisition method (e.g., field photographs, aerial or satellite
images, digital elevation models (DEMs); see Priest (1993) for a comprehensive
and quantitative treatment of detection biases). Faults with lengths that exceed
the dimensions of the measurement area are underestimated, introducing an upper
bias referred to as “censoring,” whereas image resolution, for example, may lead
to undercounting of small faults, introducing a lower bias known as “truncation.”
Similarly, measurements of fault lengths and displacements are limited by the
spatial and vertical resolution of a DEM (e.g., Hooper et al., 2003).

The formation of the largest faults and the distribution of strain appear as widely
variable in normal fault systems. Two end-member cases can be identified: (1)
localized fault systems, with a few large faults accumulating around 50% of the
total strain accommodated by the population and a large number of small faults
(with a complementary strain) (Figure 10.3a and 10.3c), and (2) distributed fault
systems, with strain regularly distributed along evenly spaced faults having a char-
acteristic length scale (Figure 10.3b and 10.3d). These fault system geometries,
which are a function of several factors, including deformation rate, stress transmis-
sion mode, rheology of the lithospheric strength envelopes including stratification,
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Figure 10.3. Two end-member cases of fault population geometries, after Soliva
and Schultz (2008). (a) Normal fault population with localized faulting along
relatively few large faults in the Afar depression. (b) Normal fault population
from the East Pacific Rise, with distributed faulting along many regularly spaced
faults of small and subequal displacement. Figure parts (c) and (d) are schematic
views of the fault population geometry of the cases presented in (a) and (b). Figure
parts (d) and (e) are the statistical properties specific to each of these cases.

strain magnitude, and properties inherent to the faults and their physical character-
istics (see Section 3.3), can be identified and then described precisely by using the
fault population statistics.

3.2 Statistical properties

Statistical analysis applied to fault patterns was developed mainly in the 1990s
in order to: (1) decipher quantitatively fault and fault-population growth, and (2)
predict the fault morphology. For these two reasons, research within the Earth
Science community was undertaken to quantify the geometry of faults in as wide
a scale range as possible to provide measured dimensions and displacements of
faults as tests of various fault growth scaling laws (see summary by Cowie et al.,
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1996). As mentioned previously, normal fault systems were thoroughly analyzed
because of their generally clear expression of the displacement distribution (i.e.,
topography) along their surface traces.

3.2.1 D–L scaling

The first scaling law studied on multiple fault populations is the maximum
displacement–length relation (Dmax–L). Since displacements accumulate along
faults during their lateral and down-dip growth, or “propagation,” this relation
is intended to describe quantitatively, from a simplified mechanical basis, how the
faults grow. By analyzing different fault populations separately, the data show that
this relation can be explained in log–log space by the following equation (e.g.,
Scholz and Cowie, 1990; Cowie and Scholz, 1992a,b; Clark and Cox, 1996):

Dmax = γLn. (10.4)

The parameter γ is called the “scaling factor” (Cowie and Scholz, 1992b) or
a “characteristic shear strain” (Watterson, 1986), and the power-law exponent n
describes the rate of displacement accumulation relative to L.

The slope of individual fault populations across the full range of lengths and
fault types available was shown to be approximately n = 1.0 (Scholz and Cowie,
1990; Gudmundsson and Bäckström, 1991; Cowie and Scholz, 1992a; Dawers
et al., 1993; Schlische et al., 1996; Clark and Cox, 1996). Work has also shown,
however, that a single relation of the form of Equation (10.4) – with a single
unique value of γ – cannot represent all the data from every fault population
when all are plotted together (Figure 10.4) (Clark and Cox, 1996; Wibberley et al.,
1999; Schultz and Fossen, 2002; Soliva et al., 2005; Schultz et al., 2006, 2008).
Instead, each fault population has its own particular scaling law, principally with
its own intercept γ that is associated with several factors, including lithology, fault
geometry, frictional properties, and stress states. In detail, the distinctiveness of
individual fault populations is revealed by variability of the values of γ and n. For
example, the variability of these parameters between various fault systems shown
from the Earth in Figure 10.3 (0.538 < n < 2, and for n = 1, 0.0001 < γ < 0.6)
suggest that some of the processes acting on fault growth on a given planet or
satellite that can modify γ and n are scale dependent, with others related to particular
fault geometries within the population (see also Schultz, 1999):

� Host-rock rigidity, as for example soft sediments in the subsurface (Muraoka and Kamata,
1983; Wibberley et al., 1999; Gudmundsson, 2004),

� Friction of the fault zone, as for example the transition from deformation band (cm to
m scale) to faults (m to km scale) in sandstones (Fossen et al., 2007, Wibberley et al.,
2000),
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Figure 10.4. Log–log diagram of maximum displacement – length data for terres-
trial normal faults, drawn using the convention of Dmax/2 and fault half-lengths
(L/2) sometimes used in fault-population studies, following Wibberley et al.
(1999) and others. Note the wide variation between data groups, especially for
small scales. Lines with different exponents n from Equation (3) are reported and
labeled. Principal factors that influence the Dmax/L ratio deduced from field stud-
ies and rock fracture mechanics are noted on the diagram including fault aspect
ratio (L/H), shown as shaded tipline ellipses.

� Propagation in layered sequences, as for example faults confined to particular layers and
vertically restricted by subjacent and superjacent shale layers (Schultz and Fossen, 2002;
Wilkins and Gross, 2002; Soliva et al, 2005),

� Fault initiation, for example the transition from fracture opening to faulting (Gudmunds-
son, 1992; Peacock, 2002; Crider and Peacock, 2004), and potentially,

� The rheology of the lithospheric strength envelopes (Cowie, 1998; Bellahsen et al., 2003;
Soliva and Schultz, 2008).

As a result, the displacement–length scaling relations for a particular fault pop-
ulation can only be understood once the details of fault geometry, interaction and
linkage, rock type, mechanical stratigraphy, and geodynamic context are docu-
mented and utilized.

3.2.2 Length distribution

Lengths of seismic (earthquake) ruptures were studied in the 1980s and subse-
quently associated with the faults in order to quantify the long-term fault population
strain (e.g., Scholz and Cowie, 1990). One of the main purposes of these early stud-
ies was to discuss the relative contribution of larger and smaller faults in the same
population, which has implications for strain calculations using remote sensing
data from the Earth, as well as from the planets and satellites. A series of mea-
surements of fault populations in the Earth’s crust exhibited a negative power-law
length distribution on cumulative frequency diagrams (Marrett and Allmendinger,
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Figure 10.5. Example of characteristic length distributions observed on terres-
trial fault populations. (a) Negative power-law length distributions (also called
scale-invariant populations). (b) Negative exponential length distributions (scale-
dependent populations).

1991; Walsh et al., 1991; Scholz et al., 1993), with a negative power-law exponent,
c, varying from ∼0.5 to ∼2 (Figure 10.5a). Similar results were found for Martian
fault populations (Schultz and Fori, 1996; Schultz, 2000a). This power-law (or
approximately “fractal”) distribution reflects strain localized mainly along a few
large faults, which themselves contribute up to ∼50% of the population moment
and strain accommodation for the case of a typical (and fractal) power-law expo-
nent c = 2 (Kakimi, 1980; Villemin and Sunwoo, 1987; Scholz and Cowie, 1990),
with the remainder of the moment and strain distributed on the smaller faults in a
complementary proportion (Walsh et al., 1991).

This behavior has been interpreted to be the result of the long-term stability and
self-similarity of the stress-shadowing process (or elimination process for joints;
Aydin and DeGraff, 1988) that controls fault propagation, clustering, and therefore
linkage in the whole fault population (see also Cladouhos and Marrett, 1996).
However, the assertion that a fault population is self-similar requires a single value
of c that remains constant throughout its development, which is not borne out
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in nature. Kakimi (1980) suggested that the “fractal dimension” of a given fault
population varies with strain magnitude, i.e., have steeper slopes (larger c) when
total strains are smaller, and have shallower slopes (smaller c) when total strains
are greater, a result verified in numerical experiments by Cladouhos and Marrett
(1996), for earthquakes by Wesnousky (1999), and for faults on Mars by Wilkins
et al. (2002). The variation in the magnitude of fault scaling parameters means
that the term “self-similar” may not strictly apply, except perhaps to a particular
snapshot of a fault population’s development (e.g., see Tchalenko, 1970, for an
example).

Alternatively, both field examples and analogue modeling have shown that fault
populations involving strain distributed along regularly spaced faults are generally
characterized by negative exponential relations and show a characteristic length
scale (e.g., Cowie et al., 1994; Ackermann et al., 2001) (Figure 10.5b). The common
aspect of these fault populations is that they grow across a single mechanical layer
or unit in which the faults are vertically confined. The confinement of the faults
within the layer (also called fault “restriction,” e.g., Nicol et al., 1996; Schultz
and Fossen, 2002) limits the horizontal extent of fault interaction through their
stress fields to a nearly constant value (Soliva et al., 2006), similar to stratabound
joints whose regular spacings scale with the layer thickness (Bai and Pollard,
2000). It appears that the fault population reaches a stage with a characteristic
length (Ackerman et al., 2001) that can evolve to a maximum length if the layer is
“saturated” (Soliva et al., 2005), i.e., when the fault spacing stops evolving and the
spacing then stabilizes at a constant value.

3.2.3 Spacing

Fault spacing is a sensitive response to the stress field within the fault population
(e.g., Cowie and Roberts, 2001; Roberts et al., 2004; Soliva et al., 2006). Fault
spacing, which is dependent on fault displacement magnitude and distribution
(Crider and Pollard, 1998; Cowie and Roberts, 2001; Soliva and Benedicto, 2004),
is linearly related to fault overlap when the fault-length distributions are described
by power laws and when Dmax–L scaling is linear (i.e., a scale-independent, nonre-
stricted fault population, Figures 10.3a and 5a; see also Segall and Pollard, 1983,
for analogous spacing relationships in nonrestricted joint populations and Olson,
1993, for spacing in restricted joint populations). This fault-length-dependent spac-
ing relationship implies that rocks can support long-term and wide-ranging fault
interactions over a broad range of scales (observed from 1 mm to 100 km) (Aydin
and Nur, 1982; Peacock, 2003) (Figure 10.6).

On the other hand, fault systems that are characterized by exponential length dis-
tributions (Figures 10.3b and 5b) generally show strain distributed along regularly
spaced faults (i.e., a lognormal distribution on the length–frequency diagram; e.g.,
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Figure 10.6. (a) Log-log diagram of relay displacement vs. fault spacing, including
different published datasets over a large scale range. Gray straight line is the max-
imum value of relay displacement to separation ratio (D/S) for the data composed
only of open relays, with equation labeled. Black straight line is the minimum
value of D/S for the data composed of fully breached relay, with equation labeled.
(b) Log–log diagram of fault overlap vs. spacing, including different published
datasets (gray surfaces) over a large scale range. See Soliva and Benedicto (2004)
for the source of data.

Ackermann et al., 2001; Soliva and Schultz, 2008; Figure 10.7). As discussed in
the previous section, regular fault spacing is due to the limited horizontal extent of
the shear stress reduction (or “shadow”) zone around the vertically restricted faults
that is, in turn, a function of the short and constant fault height in the population
(Soliva et al., 2006). This effect also limits the maximum distance for strong fault
interaction, therefore controlling the dimensions of relay ramps and eventual fault
linkage (Soliva and Benedicto, 2004). This behavior is not consistent with self-
similar fault segmentation, but instead is related in a scale-dependent manner to the
thickness of the mechanical unit in which the faults are confined (see Ackermann
et al. (2001) and Soliva et al. (2006) for normal faults, Schultz and Fossen (2002)
for deformation bands, and Hu and Evans (1989) and Bai and Pollard (2000) for
joint sets).
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Figure 10.7. Histogram showing the frequency of fault spacing along scan lines
crossing a fault population. N is the number of detected intersections between the
faults and the scan lines. Spacing between faults having the same dip direction,
in horst, and in graben configurations are distinguished. Broken and solid lines
are logarithmic-normal fits for all configurations and for faults of the same dip
direction, respectively. Least-squares coefficients (R2) are labeled.

3.3 Mechanisms of fault growth

Fault geometries are frequently analyzed using Linear Elastic Fracture Mechan-
ics (LEFM) (e.g., Pollard and Segall, 1987; Walsh and Watterson, 1988; Pollard
and Fletcher, 2005) although some are better matched by using post-yield frac-
ture mechanics (PYFM) (e.g., Cowie and Scholz, 1992b; Schultz and Fossen,
2002) or “symmetric linear stress distribution” (Bürgmann et al., 1994; Schultz
et al., 2006) models. Figure 10.8 summarizes these three quasi-static models.
In each of these models, the host rock (taken to be either two-dimensional or
three-dimensional in extent) having an approximately homogeneous linear elastic
behavior contains a shear displacement–discontinuity (the fault) subject to the far-
field, remote, “regional” tectonic stresses and the constitutive relations of the fault
(i.e., a constant or variable value of friction along the fault).

In the LEFM model, a constant stress drop (or “driving stress”) across the fault
produces an elliptical distribution displacement along a straight planar fault, and
unrealistically large (infinite or “singular”) local stress concentration at the fault
tips (Figures 10.8b and c). In the PYFM model, cohesive-frictional end zones are
defined that represent the inelastic processes (such as microcracking and fault-tip
growth) along and around the fault terminations (Figure 10.8a, see the fault tip).
This model therefore integrates the concept of rock yield strength within a larger
volume than possible for the LEFM approach, limiting the amount of local stress
increase at fault tips to this strength (with values several to several tens of MPa) and
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Figure 10.8. Mechanical models of shear rupture along a fault surface. (a)
Schematic representation of the fault zone from the tip to the fault center show-
ing the evolution of the fault rock damage and suggesting the evolution of the
frictional properties (after Cowie and Scholz, 1992b). (b) Displacement profiles
predicted by three mechanical models. (c) Resulting stress distributions along the
fault plane. See text for discussion.

producing a bell-shaped displacement distribution along the fault (Figures 10.8b
and c; Cowie and Scholz, 1992b; Cooke, 1997; Martel, 1997; Martel and Boger,
1998). In the “symmetric linear stress distribution” model, a linear variation of
frictional strength is prescribed along the fault, from a lower value at fault center
to a larger value at the fault tips. This approach, which implies a non-constant
stress drop along the fault, aims to simulate a variation in constitutive relations,
or “maturity,” along the fault in which the fault-zone material or gouge is more
mature and less resistant to slip near the fault center. This model produces a linear
displacement distribution of displacement along the fault, as commonly observed
(e.g., Manighetti et al., 2001, 2005), and corresponding patterns of stress changes
off the fault as inferred from stress-triggering studies (e.g., Cowie and Roberts,
2001; Roberts et al., 2004) (Figures 10.8b and c).

Work based on these three fault models reveals the importance of four principal
sets of parameters:

� Remote stress state
� Host-rock mechanical properties
� Fault geometry
� Friction and the constitutive relations along the fault

The remote stress state in 3-D governs the initial sense of fault displacement
(normal, strike-slip, or thrust) and also the displacement magnitude via the differ-
ential or driving stress (e.g., Cowie and Scholz, 1992b; Bürgmann et al., 1994).
It therefore exerts a primary influence on the average value of Dmax/L for a given
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fault population (Schultz and Fossen, 2002; Schultz et al., 2006). However, the
remote stresses are frequently difficult to estimate for inactive fault populations or
from planetary observations, and they can be estimated only in a few terrestrial
cases where outcrop conditions allow measurements of parameters such as 3-D
fault geometry, friction, and material properties (e.g., see Scholz, 2002).

Material properties of the rock surrounding a fault, such as its stiffness or rigidity
(as expressed principally by its Young’s or shear moduli), near-tip yield strength
(Scholz and Lawler, 2004), and viscosity (Bellahsen et al., 2003), are also key
factors that modulate fault displacement (Walsh and Watterson, 1988; Cowie and
Scholz, 1992b; Bürgmann et al., 1994; Wibberley et al., 1999; Gudmundsson,
2004). This is particularly due to the wide variety of rock mechanical proper-
ties that promote a large range of possible values for rocks (e.g., shear modulus,
0.5 GPa < G < 50 GPa, from laboratory testing (Hatheway and Kiersch, 1989).

Fault tipline (the line defined by fault surface termination, i.e., where displace-
ment equals zero; Davison, 1994) geometry is an important characteristic that also
controls displacement distribution and magnitudes (Cowie et al., 1992b; Willemse,
1997; Schultz and Fossen, 2002). Moreover, the morphology of the fault surface
is also important. For example, corrugations of the fault surface resulting from
rock heterogeneity or fault linkage during its evolution (e.g., Schultz and Balasko,
2003; Okubo and Schultz, 2006a) can permit, or inhibit, displacement with respect
to the slip direction (conservative and non-conservative barriers, respectively, in
the sense of King and Yielding, 1984).

Fault friction can be thought of as a function of the normal stress and friction
coefficient for the fault surface and has been integrated into all three fault growth
models discussed above (Figure 10.8c). These models are largely consistent with
field observations that show variations in meter-scale fault segmentation geometry,
cataclastic fault-rock textures, and fault-rock type from the tips to the center of a
fault (e.g., Caine et al., 1996; Wibberley et al., 2000) (Figure 10.8a). Frictional
resistance (friction coefficient times the normal stress, plus cohesion if any) along
faults modifies the displacement magnitude and can affect the displacement distri-
bution along a fault (e.g., Aydin and Schultz, 1990; Schultz and Aydin, 1990; Aydin
et al., 1990; Schultz, 1992; Kattenhorn and Pollard, 1999; Figure 10.8b). Based
on these models and fault rock observations, it can be concluded that in porous
siliciclastic rocks friction can influence the slope of the Dmax–L scaling relation
for some fault sets (Bürgmann et al., 1994; Wibberley et al., 1999). Because the
magnitude of normal stress resolved on fault planes is related to planetary gravity
g, the scaling relations for fault populations on other planets and satellites (having
smaller values of g than Earth) differ systematically in the value of their scal-
ing intercepts γ throughout the solar system (Schultz et al., 2006), as discussed
below. Other potential factors such as far-field extension rate (in terrestrial oceanic
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fast- vs. slow-spreading centers or continental rifts) or modes of slip event accu-
mulation (Gutenberg-Richter vs. “characteristic,” e.g., Wesnousky, 1994, 1999;
Scholz, 2002) are probably of importance for fault population development but are
not yet clearly demonstrated with planetary examples and theory.

3.3.1 Fault slip and 3-D propagation

Propagation of a fault requires a critical value of near-tip displacement gradient
leading to an amount of fault-tip stress equal to the rock’s local yield strength
(Cowie and Scholz, 1992b; Bürgmann et al., 1994; Gupta and Scholz, 2000a;
Scholz and Lawler, 2004). If the near-tip stress reaches the shear yield strength,
the rock fails there by macroscopic shearing, and displacement accumulates along
the various parts of the lengthening fault. LEFM models predict an infinitely large
value of near-tip stress at the tip of a fault (Figure 10.8) and unambiguously
predict a scaling exponent of n = 0.5 that is inconsistent with the data compiled in
Figure 10.4 (Scholz, 2002, p. 116; Olson, 2003; Schultz et al., 2008).

The two other classes of fault-growth models discussed above (PYFM and the
symmetric linear displacement model; Figure 10.8) are consistent with a linear
Dmax–L scaling (n = 1) because they avoid producing a near-tip singularity. In
these two models, γ is a function of (1) elastic properties; (2) driving stress;
(3) yield shear strength; and (4) fault aspect ratio (L/H; see Figure 10.1). These
approaches, implicitly or explicitly, consider “radial” or “proportional” fault growth
(fault propagation having approximately the same rates down-dip and horizon-
tally) and predict a range of fault displacement profiles from bell-shaped to linear
(Figure 10.8b). The growth of such an isolated fault can produce nearly circular
or elliptical tipline shapes (e.g., Nicol et al., 1996; Martel and Boger, 1998) if the
rock strength is comparable around the fault tipline. In layered rocks, H can remain
constant during fault growth if the tipline is restricted by a lithologic or rheolog-
ical barrier (i.e., “vertical restriction” in Figure 10.1) (Scholz, 1997; Schultz and
Fossen, 2002). In this case, the slope of the fault-population exponent changes from
n = 1 in the earlier, non-restricted, proportional growth phase, to n < 1 as the faults
grow laterally while being restricted vertically (Schultz and Fossen, 2002; Soliva
et al., 2005; Fossen and Gabrielsen, 2005, p. 161; Figure 10.4).

3.3.2 Interaction and linkage

Fault interaction and linkage are a major process leading to fault growth (Peacock
and Sanderson, 1991; Dawers and Anders, 1995; Mansfield and Cartwright, 1996;
Crider and Pollard, 1998; Cowie and Roberts, 2001). Field data and theory have
shown that two initially isolated fault segments can interact through their stress
fields as they grow, eventually linking across their relay zones in 3-D (e.g., Segall
and Pollard, 1980; Figures 10.9a,b and c). During the first step of fault interaction,
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Figure 10.9. 3-D geometry and evolution of segmented normal faults. (a) Geom-
etry of lateral linkage and associated displacement distribution. (b) Three-
dimensional (3-D) geometry of vertical linkage and associated 3-D displacement
distribution. (c) 3-D representation of segmented faults. (d) Displacement evolu-
tion model.

the increase of shear stress around the stepover, or relay zone, leads to a transfer
of displacement on one or each segment if both are actively slipping, leading to an
increase of displacement gradient along the interacting fault ends. This interaction
promotes an increase of the Dmax/L ratio, which ultimately can lead to an abrupt
increase in length by linkage of the temporarily over-displaced fault segments
and a subsequent period of fault displacement recovery for the newly linked fault
(Figure 10.9d). When fault linkage and displacement readjustment are achieved,
the resulting linked segmented fault can behave as a new larger kinematically
coherent fault having a Dmax/L ratio consistent with non-linked isolated faults
(e.g., Cowie and Roberts, 2001). These perturbations of fault displacement, due
to the short-range mechanical interactions between the closely-spaced fault seg-
ments, can explain a large component of the scatter observed on Dmax–L diagrams
(Figure 10.4). Fault interaction and linkage also control other fault population
characteristics, such as: (1) fault length distribution (Cladouhos and Marrett, 1996),
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(2) fault spacing (Soliva et al., 2006), geometry of syntectonic basins and deposits
(e.g., Gawthorpe and Hurst, 1993), and (3) slip and sedimentation rate (e.g., Ravnas
and Bondevic, 1997; Cowie and Roberts, 2001).

3.3.3 Whole fault system development

The compiled datasets shown in Figure 10.4 give a synoptic view of the Dmax–L
scaling relationships of normal faults observed at the Earth’s surface. These data
show a scatter of the Dmax/L ratio (from 10−3 to 4 × 10–2) for faults of L < 200 m.
This suggests that at a small scale (relative to the mechanical unit thicknesses
typical of stratified igneous or sedimentary sequences), fault displacement is greatly
influenced by both the lithological discontinuities (acting on fault shapes) and
the rheology (stiffness or rigidity, friction) of each rock type. This wide Dmax–L
variability is possible because of the small dimension of the faults with respect to
the mechanical unit thicknesses, allowing the faults to be sensitive to the specific
rheology of each mechanical unit. In contrast, if the fault dimension is large enough
with respect to the lithological stratification (for example 1 km long for mechanical
units of meter-scale thickness), displacement must then be controlled by the average
rheology of the entire bounding layered sequence. This seems to be a reasonable
explanation for at least some of the scale dependence of the Dmax–L data variability
(e.g., Soliva et al., 2005; see the large scatter for small faults compared to large
faults in Figure 10.4). Therefore, regardless of the fault initiation process (see
Crider and Peacock, 2004) or other factors such as propagation rates (e.g., Walsh
and Watterson, 1987; Peacock and Sanderson, 1996), it is improbable that a fault
will grow with a consistently linear Dmax–L behavior (i.e., without change of slope)
from the centimeter to the kilometer scale in layered sequences of contrasting
lithologies.

To understand fault population growth and scaling, Gupta and Scholz (2000a)
calculated the perturbation of the maximum Coulomb shear stress (King et al.,
1994; Harris, 1998) around a series of faults. They showed that interaction and
subsequent linkage develop preferentially for similar spacing/overlap ratios inde-
pendent of the scale of observation, where Dmax–L scaling, fault aspect ratio, and
the tipline geometry are scale invariant. Their work suggests that a self-similar seg-
mentation geometry is mechanically possible in a fault population if the shear stress
perturbation around the faults scales linearly with their horizontal lengths. This self-
invariant process of linkage allows the formation of very large faults by linkage
of smaller growing segments (e.g., Cowie et al., 1995), therefore allowing large
strain localization along just a few faults (corresponding to the first end-member
case discussed above, Figure 10.3a). The increase of fault size (1) increases the
rock volume of reduced stress that shadows the activity of smaller faults, and
(2) allows the development of the largest faults, which promotes an approximately
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fractal geometry (or scale-invariant negative power-law length distributions) of the
fault population (Sornette et al., 1990; Cladouhos and Marrett, 1996).

Because rock-mass characteristics such as rheological contrasts in layered strati-
graphies can control the geometry of one fault, it can therefore control fault inter-
actions throughout the entire fault population (e.g., Soliva et al., 2006). The pop-
ulation can thereby change from localized to distributed strain (e.g., see the two
end-member cases shown in Figure 10.3). This case concerns populations of active
faults that are confined within a layer of given thickness. Here, faults grow hor-
izontally with their vertical extent being limited, or restricted, by adjacent layers
that act as mechanical barriers (e.g., Scholz, 1997), leading to regularly spaced
faults. In this regime, faults are no longer self-similar in displacement distribu-
tion since they are vertically restricted, and instead generally exhibit flat-topped
displacement profiles (Ackermann et al., 2001; Soliva et al., 2006). The scaling
of restricted faults is well explained by non-linear growth paths on the Dmax–L
diagram (i.e., 3-D PYFM conditions with constant fault height; Schultz and Fos-
sen, 2002; Soliva et al., 2005; Figure 10.10c). This growth sequence has been
observed in fault populations over a wide range of scales and structural contexts
(Cowie et al., 1994; Carbotte and Macdonald, 1994; dePolo, 1998; Poulimenos,
2000; Manighetti et al., 2001; Bohnenstiehl and Carbotte, 2001; Polit, 2005; Soliva
and Schultz, 2008; Polit et al., 2009). Cowie et al. (1994) describe crustal-scale
fault populations in oceanic lithosphere at the East Pacific Rise and Soliva and
Schultz (2008) along the Main Ethiopian Rift, where the much of the strain is
distributed on nearly evenly spaced faults (Figure 10.5b). At the East Pacific Rise,
the fault population has been interpreted to indicate growth within (confined to)
the oceanic brittle crust (Cowie, 1998; Bohnenstiehl and Kleinrock, 1999; Garel
et al., 2002), whereas at the Main Ethiopian Rift the faults seem confined to com-
petent basalts. These faults also show non-linear Dmax–L scaling with a significant
decrease in the Dmax/L ratio with increasing fault length, i.e., n < 1 (Cowie et al.,
1994; Manighetti et al., 2001).

3.4 Scaling relations for planetary faults

Precision measurements of the maximum displacement (“offset,” Dmax) and map
lengths L of surface-breaking faults on Mars and Mercury demonstrate that less
displacement per unit length is accumulated along faults on these planets than along
terrestrial ones. For example, normal faults from Tempe Terra (Mars) and thrust
faults from Arabia Terra (Mars) show Dmax/L ratios of 6.7 × 10–3 (Wilkins et al.,
2002; Watters, 2003) and 6 × 10–3 (Watters et al., 1998), respectively. Thrust faults
from Mercury also show Dmax/L ratios of 6.5 × 10–3 (Watters et al., 2000, 2002;
Watters and Nimmo, Chapter 2). The fault populations discussed here currently lack
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Figure 10.10. 3-D displacement–length scaling relations and the growth of strati-
graphically restricted faults. (a) Fault growth paths on the Dmax–L diagram (after
Schultz and Fossen, 2002) showing stair-step trajectory of alternating propor-
tional (linear, filled symbols) and non-proportional (restricted, open symbols)
fault growth. (b) Examples of restricted fault populations on Earth (normal faults
from Fumanyá in the southeast Pyrenees, after Soliva et al., 2005) and Mars
(graben-bounding normal faults from the northern plains, after Polit, 2005, and
Polit et al., 2009). (c) Cross-sectional fault geometries shown schematically for
each part of the growth sequence. Filled and open symbols for fault-shape ellipses
as in (a).

evidence for significant restriction, although many of their characteristics such as
displacement distributions that could suggest restriction remain to be investigated;
in contrast, a set of restricted grabens from the Tharsis area of Mars (Polit, 2005;
Polit et al., 2009) are discussed below (see Figure 10.10c). Typical values for
terrestrial faults (normal, strike-slip, or thrust) are ∼1–5 × 10–2 (see the recent
compilations by Schultz et al., 2006, 2008). Currently, topographic data of sufficient
accuracy and resolution to assess Dmax–L scaling of faults are available only for
Mars and Mercury.

The data for Martian normal faults, such as those on Tempe Terra (Wilkins
et al., 2002), are systematically offset to smaller values of displacement by a
factor of about five from the terrestrial data (Figures 10.10b and 10.11a). A similar
offset is observed for thrust faults on both Mars and Mercury (Plate 25b). Detailed
examination of the Martian and Mercurian faults indicates that the smaller Dmax/L
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ratios result from smaller displacements (accurately measured from topographic
data; e.g., Watters et al., 1998, 2000, 2002; Wilkins et al., 2002) rather than an
overestimation of fault lengths by the same factor of five.

Schultz et al. (2006) found that the Dmax/L ratio for non-restricted faults depends
on three primary factors: stiffness of the rock surrounding the faults (Young’s
modulus or shear modulus (rigidity)), shear driving stress, and yield strength,
with all three of these primary factors being influenced to various degrees by
planetary gravity g. For the same conditions of rock type (e.g., basaltic rock mass),
fault type (normal), and fluid-saturated crustal rocks (i.e., “wet” conditions with
λ = 0.36–0.4), g reduces Dmax for Martian faults, relative to terrestrial ones, by
gMars/gEarth = 0.38 (via the driving stress term). Yield strength in shear scales with
gravity, with the strength of the Martian basaltic rock mass being approximately
one-half of the corresponding terrestrial one. Modulus decreases with decreasing
g, to a normalized value of ∼0.84 for the (wet) Martian case. The combined effect
of g on all three key factors is a reduction in Dmax/L of about a factor of 5–6,
consistent with the data for normal and thrust faults from the literature (e.g., Clark
and Cox, 1996; Schultz et al., 2006).

Restricted faults have only recently been recognized in planetary datasets
(Figure 10.10b) and the implications of this class of fault for the stratigraphy,
seismology, and tectonics of planets and satellites is as important for those bodies
as for the Earth itself (see discussion by Knapmeyer et al., 2006). Fault restriction
can be identified in terrestrial and planetary datasets by using one or more diagnos-
tic techniques, including quantitative examinations of the fault-related topography
(Soliva et al., 2005; Polit et al., 2009), spacing (e.g., Soliva et al., 2006), Dmax–L
ratios (e.g., Soliva and Benedicto, 2005; Polit et al., 2009), relay-ramp dimensions
(e.g. Soliva and Benedicto, 2004), and length–frequency data (e.g., Gupta and
Scholz 2000b; Soliva and Schultz, 2008). Stratigraphically restricted faults repre-
sent snapshots of the progressive growth of fault systems in layered sequences and
their strain magnitudes can be computed by using the well-known equations for
“large faults” (see Section 5).

Assessment of Dmax–L scaling relations of faults on the Moon, Venus, and icy
satellites of the outer solar system is currently hindered by large uncertainties in
measurements of displacement (due to low-resolution, or unavailable, topographic
data) and, to a lesser extent, length (due to imaging data having coarse spatial resolu-
tion). The results summarized here (Figure 10.11) suggest that faults on Venus (see
McGill et al., Chapter 3) should accumulate somewhat smaller displacements than
their terrestrial counterparts given an ∼10% reduction in gravity (g = 8.8 m s–2)
relative to the Earth. Faults on the icy satellites of Jupiter and Saturn (see Collins
et al., Chapter 7) probably also scale with gravity, with particular values of
the Dmax/L ratio depending on appropriate values of near-tip ice strength and
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Figure 10.11. Displacement–length scaling relations for planetary faults (after
Schultz et al., 2006). (a) Dmax–L data for normal faults from Earth (gray circles,
sandstone and non-welded tuff; black circles, basalt) and Mars (gray diamonds,
Tempe Terra; gray square, Thaumasia graben, linked faults, ‘TG’); data from
Schlische et al. (1996), Wilkins et al. (2002), and Hauber and Kronberg (2005).
Calculated scaling relations (see Schultz et al., 2006 for parameters): EBw, Earth
basaltic rock mass with wet conditions; ESw, Earth sandstone rock mass with
wet conditions; MBw, Mars basaltic rock mass with wet conditions; MBd, Mars
basaltic rock mass with dry conditions; MSw, Mars sandstone rock mass with wet
conditions; MSd, Mars sandstone rock mass with dry conditions. (b) Dmax–L data
for thrust faults from Earth (black squares and triangles), Mars (open circles) and
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ice stiffness (e.g., Nimmo and Schenk, 2006) along with reduced surface grav-
ities of those satellites. Lunar faults will likely scale with its smaller surface
gravity as well, with faults that cut highland regolith (which has significantly
smaller values of modulus than does basalt) exhibiting larger displacements than
those that cut mare basalts, all other factors equal (see Watters and Johnson,
Chapter 4).

Comparisons of displacement–length scaling between planets and satellites
should also be made for faults that do not cut through the mechanical or ther-
mal lithosphere, so that flexure or tilting of faulted blocks does not contribute to
increased values of offset (e.g., Cowie and Scholz, 1992b; Nimmo and Schenk,
2006). Additionally, faults should be isolated from other, nearby faults (i.e., not
segments from a fault zone or rift) and not be stratigraphically restricted to
ensure the clearest comparison with terrestrial and other data that are collected
following these guidelines. Because fault-related strains depend on the Dmax/L
ratio along with the fault density (Gupta and Scholz, 2000b; Schultz, 2003a),
the average strain accommodated by faulting at the surface of a planetary body,
for the same style of tectonic domain, may generally decrease as a function of
gravity.

4 Fault-related topography

The topographic signature of a fault at the planetary surface reveals its geometry
and characteristics in the subsurface, as demonstrated from many terrestrial studies
(e.g., Ma and Kusznir, 1993; Willemse, 1997; Niño et al., 1998; Soliva and Bene-
dicto, 2005). For example, the magnitude and distribution of uplift along normal
faults (i.e., the small footwall uplift on normal fault or graben flanks; Weissel and
Karner, 1989) and thrust faults (i.e., the major uplift on the upper plate called

←
Mercury (gray diamonds); data from Elliott (1976), black squares; Mége and
Riedel (2001), black triangles; Shaw et al. (2002), black circle (Puente Hills
Blind-Thrust System, ‘PHT’); Davis et al. (2005), right-pointing black triangle
(Ostler Thrust, ‘OT’); Watters et al. (2000, 2002); and Watters (2003). Calculated
scaling relations labeled as in (a) but with L/H = 0.5 for terrestrial thrust faults
with lower ticks at L/H = 1.0 and 3.0 (upper shaded region in the figure), and
L/H = 3.0 for Martian and mercurian thrust faults with upper tick at L/H = 1.0
(lower shaded region). (c) Predicted values of Dmax/L for smaller planets and
satellites. All curves calculated for normal faults assuming L/H = 3, N = 3000,
and basaltic rock-mass parameters. (d) Summary of Dmax–L scaling for terrestrial
planets calculated for wet basaltic crusts (dashed curves) and dry basaltic crusts
(solid curves). (e) Dmax–L scaling values for smaller planets normalized by (wet)
terrestrial ones.
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Figure 10.12. Relationships between cumulative fault offset D, fault dip angle
δ, and structural topography, shown in crosssection, due to deformation of the
planetary surface by the faulting for (a) normal faults (after Schultz and Lin,
2001) and (b) thrust faults (after Schultz, 2000b).

“lobate ridges” on the Moon, Mars, and Mercury, Figure 10.12; Niño et al., 1998;
Cohen, 1999; Schultz, 2000b; Ma and Kusznir, 2003) is a function of the map
length and down-dip height of an individual fault. Topographic uplift across faults
is also a reliable indicator of the subsurface fault geometry on Mars (e.g., Schultz,
1999, 2000b; Schultz and Lin, 2001; Schultz and Watters, 2001; Watters et al.,
2002; Wilkins et al., 2002; Wilkins and Schultz, 2003; Okubo and Schultz, 2003,
2004, 2006a; Polit et al., 2009), where outstanding high-resolution topographic
data currently exist.

Because erosion and degradation of topography is relatively slow on Mars, fault-
related topography is well expressed, especially for younger faults. However, even
Noachian thrust faults (with ages ∼4 Ga; see Figure 8.1 of Tanaka et al., Chapter 8)
have topography that is sufficiently well preserved to reveal the subsurface details
(e.g., Schultz, 2003b; Okubo and Schultz, 2003, 2004; Goudy et al., 2005; Grott
et al., 2006). For example, forward mechanical models of the topography, both
boundary element and finite element, produced by normal faults (Schultz and Lin,
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Figure 10.13. Topography measured across Amenthes Rupes, a Martian surface-
breaking thrust fault, along with the topography predicted from 1.5 km of slip along
the thrust fault (after Schultz and Watters, 2001). Lower panel shows the predicted
displacement trajectories in the Martian lithosphere associated with the Amenthes
Rupes thrust fault, with the orientation and length of the tick marks indicating the
predicted local direction and magnitude of displacements; the largest values occur
above the thrust fault (the “upper plate”). Regimes of Martian frictional stability
shown as shaded regions and labeled; star indicates maximum depth of seismic
rupture along the fault (after Schultz, 2003b).

2001; Hauber and Kronberg, 2005) and thrust faults (Schultz, 2000b; Schultz and
Watters, 2001; Watters et al., 2002; Okubo and Schultz, 2004; Grott et al., 2006)
demonstrate how topographic profiles across faults on Mars, and also Mercury, can
be used to accurately determine the dip angle and depth of faulting (Figure 10.13).
These models calculate the displacements on faults subject to a specified set of con-
ditions, including remote tectonic stresses, fault geometry and constitutive relations
such as frictional strength, and material properties of the surrounding rock, and then
calculate the associated topographic changes of the planetary surface (see Schultz
and Aydin, 1990; Schultz, 1992; and Okubo and Schultz, 2004, for details of the
boundary element method and appropriate parameters used in the program FAULT
to make these calculations). The topographic changes along Martian strike-slip
faults (Schultz, 1989; Okubo and Schultz, 2006b) provide an additional avenue
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for exploring fault geometry and lithospheric stress states (e.g., Andrews-Hanna
et al., 2008).

Investigation of MOLA profiles has also revealed evidence of igneous dikes
below certain Martian grabens (Schultz et al., 2004) by detection of the subtle
yet diagnostic topographic signature (e.g., Rubin and Pollard, 1988; Mastin and
Pollard, 1988; Rubin, 1992) produced above a dike at the planetary surface (see
also Goudy and Schultz, 2005). An example is shown in Figure 10.14. Perhaps
counterintuitively at first thought, the rock directly above the dike tip is neither
displaced nor extended to any large degree, but instead, the planetary surface on
either side of a dike is displaced upward and outward, forming the characteristic
pair of gentle topographic swells shown in Figure 10.14c (and noted, for example,
by Rubin and Pollard, 1988). In contrast, the surface topography associated with
slip along two inward-dipping normal faults is elevated yet concave-upward in the
footwall (Rubin and Pollard, 1988; Weissel and Karner, 1989; Schultz and Lin,
2001; see Figure 10.12a) and decays more rapidly with distance away from the
fault than does the topographic rise produced by dike inflation (Figure 10.14c). The
several distinctive characteristics of the topographic signatures of normal faults and
subsurface dikes, apparent in Figures 10.12a and 10.14c, permit the identification
of the type of extensional structure beneath a planetary surface (i.e., dike or fault).

The flanking topographic uplifts above a dike also correspond to the locations
of increased horizontal tensile stresses, noted previously, for example, by Williams
(1957) and Delaney et al. (1986) and related to bending of the rock there. Given
sufficient bending, ground cracks and two inward-dipping normal faults can nucle-
ate at the topographic crests and propagate downward, forming a structural graben
above the dike (e.g., Rubin and Pollard, 1988; Mastin and Pollard, 1988; Rubin,
1992; Schultz, 1996; Figure 10.14b) whose width scales with the depth to the dike
top (Rubin and Pollard, 1988; Mastin and Pollard, 1988; Schultz, 1996; Okubo
and Martel, 1998; Schultz et al., 2004). The predicted displacement trajectories in
the Martian lithosphere associated with inflation of the dike (Figure 10.14d) indi-
cate that most of the deformation of a planetary lithosphere occurs closest to the
dike, with the magnitude of deformation decreasing away from it, consistent with
previous work on terrestrial dike-related topographic changes. The displacement
magnitudes in the lithosphere scale with the magma pressure and inversely with
lithospheric stiffness (Young’s modulus). Assessment of the subsurface structure in
areas of planetary volcanotectonic activity is critical to evaluating the relationships,
for example, between regional extension, faulting, and dike intrusion (e.g., Grosfils
and Head, 1994; Koenig and Pollard, 1998; Ernst et al., 2001; Wilson and Head,
2002; Mège et al., 2003; Schultz et al., 2004) and between groundwater discharge
in Martian outflow channels and the associated dike-related grabens (Hanna and
Phillips, 2006).
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Figure 10.14. Deformation of a planetary surface due to dilation of a subsurface
igneous dike, following Schultz et al. (2004). (a) Shaded relief image showing
several northeast-trending grabens in the Tharsis region of Mars; the locations
of four MOLA topographic profiles oriented normal to one of these grabens
are indicated. (b) Topographic slice across the graben shown in (a) showing
the four MOLA profiles (heavy dashed lines) and three predictions of structural
topography: uplift due only to a subsurface dike (smooth curve; parameters given
in Schultz et al., 2004), uplift due only to the graben-bounding normal faults
(fine dashed curve), and the sum of dike and fault topographies (bold curve). The
location of the graben at the crest of regional dike-related topography is indicated.
(c) Predicted surface topography above a dike. (d) The predicted displacement
trajectories in the Martian lithosphere associated with inflation of a dike due to
magma pressure, shown following Figure 10.13 but here with arrowheads.
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Figure 10.15. The depth of faulting T is related to the down-dip height H of the
coseismic displacement distribution on a planetary fault (left panel, after Schultz
and Lin, 2001) and, in turn, to the 600 ◦C isotherm for mafic rocks (right panel,
after Schultz, 2003b), appropriate to most silicate planetary bodies.

The maximum depth of faulting T in a planetary lithosphere of mafic composition
is defined approximately by the 600 ◦C isotherm (Abercrombie and Ekström, 2001;
Grott et al., 2006; Knapmeyer et al., 2006), which is associated with the lower
stability transition between unstable (seismogenic) frictional sliding above and
stable sliding (creep) below (e.g., Tse and Rice, 1986; Scholz, 1998). Using the best-
fit value of T = 30 km (Schultz and Watters, 2001; Grott et al., 2006) for the faulted
domain at Amenthes Rupes in Arabia Terra (eastern Mars), the paleogeothermal
gradient during Martian thrust faulting was approximately 20 ◦C km–1 (assuming
a surface temperature of ∼0 ◦C and an approximately linear gradient). Down-dip
portions of the Martian thrust faults, deeper than 30 km, would tend to slip stably
but would contribute only small components to the surface topography, given their
greater depth below the surface (e.g., Cohen, 1999). On the other hand, Martian
normal faults in Tempe Terra and Alba Patera attain depths of ∼15 km (Wilkins
et al., 2002; Polit et al., 2009), implying a paleogeothermal gradient there of about
40 ◦C km–1 (Figure 10.15).

The upper (shallow) limit of seismogenic slip is related to the upper stability
transition (Marone, 1998; Scholz, 1998), above which fault zone material (such as
gouge) is velocity strengthening (Marone and Scholz, 1988). This upper stability
transition is pressure dependent and independent of fault type (Scholz, 1998). By
scaling the values used for terrestrial faults (3–4 km: Cowie et al., 1994; Scholz,
1998, and hydrostatic pore-fluid conditions) to Martian conditions (g = 3.7 m s–2),
frictional sliding along Martian faults should be conditionally stable (barring large
perturbations, such as Marsquakes on subjacent or nearby fault segments, or rapid
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healing processes; see Scholz, 1998) at depths shallower than ∼8–10 km for a “wet”
lithosphere (hydrostatic pore-fluid pressure) or ∼5–7 km for a “dry” lithosphere.
An active hydrologic system (“wet” lithosphere), along with slow slip rates along
the faults, would promote healing of the fault zone, leading to decreasing depth for
the upper stability transition.

Seismogenic (unstable) frictional sliding along the largest thrust fault in the
Amenthes Rupes population (Schultz, 2003b) should have occurred primarily
between depths of 8 and 30 km (with the depth of the lower stability transition
corresponding to the likely marsquake nucleation depth; Figure 10.15). Using
the depth range obtained above for unstable frictional sliding, ∼82% of the total
moment release and strain associated with the Martian thrust fault population was
seismogenic (assuming L/H = 3; 80% for L/H = 2). The fraction of seismogenic
strain for a given Martian fault population will decrease for smaller and less deeply
penetrating surface-breaking faults given that the upper ∼8 km globally should
remain largely devoid of nucleating marsquakes along normal, strike-slip, or thrust
faults.

5 Strain

The strain signature associated with the three fault types is well known (e.g.,
Reches, 1978, 1983; Krantz, 1988, 1989), as shown in Figure 10.2. In an extending
tectonic domain with coaxial stress–strain relations, the vertical principal stress is
the lithostat and the two horizontal principal stresses are smaller in magnitude but
still compressive, as shown by in situ stress measurements on the Earth (McGarr
and Gay, 1978; Brown and Hoek, 1978; Plumb, 1994; Zoback et al., 2003). The
domain extends in the direction of the least horizontal principal stress and thins
vertically, producing an extensional normal strain horizontally and a contractional
(thinning) normal strain vertically. For thrust faulting, the maximum principal
stress is horizontal and the lithostat becomes the least principal stress (both are, of
course, compressive, as is the intermediate (horizontal) principal stress), leading to
lithospheric thickening (with an extensional vertical normal strain) and horizontal
shortening normal to the maximum (horizontal) principal stress. For strike-slip
faulting, the lithostat serves as the intermediate (compressive) principal stress, and
the maximum and minimum (compressive) principal stresses are horizontal, leading
to a contractional normal strain perpendicular to the maximum horizontal principal
stress direction and an extensional normal strain perpendicular to the minimum
horizontal principal stress direction. Shear strains can also be calculated for these
fault types, as well as the more complicated, spatially varying, inhomogeneous
displacement and strain fields that are particularly significant within a few fault
lengths of a fault (e.g., Chinnery, 1961; Barnett et al., 1987; Ma and Kusznir, 1993).
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A'

A

Figure 10.16. A one-dimensional (1-D) sampling traverse (A–A′) across a fault
population. This sparse fault population suggests how the value of strain depends
on where the traverse is taken.

An extensive literature exists on how the amount of strain accommodated by a
population of faults can be quantified (see Kostrov, 1974; Segall, 1984a,b; Wojtal,
1989; Scholz and Cowie, 1990; Marrett and Allmendinger, 1991; Westaway, 1994;
Scholz, 1997; and Borgos et al., 2000, for representative approaches). Using the
approach of a simple horizontal one-dimensional (1-D, line) traverse across a
deformed region (e.g., Golombek et al., 1996; see Figure 10.16), the amount of
displacement across each fault is first measured from topographic data and then
corrected to take into account only the component of displacement parallel to the
traverse (i.e., correct for strike and dip; Peacock and Sanderson, 1993; Scholz,
1997; see below). For closely spaced faults (called “penetrative deformation”) it
may be easier to trace the offset of a passive marker from one side to the other,
instead of measuring all the fault displacements; see Pappalardo and Collins (2005)
for a calculation of the strains along a dense, closely-spaced fault population on
Ganymede. However, many planetary fault populations tend to be sparse – that is,
faults that are widely spaced relative to their lengths (e.g., Segall, 1984a; Barnett
et al., 1987). Strains measured along a 1-D traverse can therefore miss many small
faults. In addition, measurements of fault offset will likely not be made at the
positions of maximum fault displacement for all faults transected by the traverse.

Instead of using a 1-D line traverse for calculating strain, an alternative approach
to obtaining fault-related normal strain parallels that from seismology, i.e., relating
incremental displacements accumulated along rupture patches during an earthquake
and the total (or cumulative) displacements accumulated along faults (e.g., Segall,
1984a; Scholz and Cowie, 1990; Scholz, 1997). Any fault has three characteristic
dimensions, including length L (defined as its horizontal dimension), maximum
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Dmax or average D displacement (usually located near the fault’s midpoint), and
height H (measured normal to length, along the fault plane, in the vertical or down-
dip direction). The procedure for calculating the average horizontal normal strain
for a deforming region, for example, is straightforward and examined in this section.
Specifically, the three variables (L, D, and H) for each fault in the population are
assessed (see Figure 10.10c), summed, and then divided by the dimensions of the
deforming region.

First the geometric moment Mg is calculated, which is given by

Mg = DLH (10.5)

and which is defined by average displacement D, fault length L, and down-dip
fault height H, with units of m3 (King, 1978; Scholz and Cowie, 1990; Ben-Zion,
2001). D is the average offset along the fault (not Dmax), measured in the plane of
the fault; it is not the component in a horizontal plane, as will be needed later for
the horizontal normal strains for extension or contraction. The geometric moment
represents the volume of deformed rock associated with a fault population. As
a fault grows in size, its surface area increases; because a fault’s displacement
scales with L, the geometric moment Mg increases as a fault grows in size and in
displacement.

The amount of deformation attributed to each fault is given by a related scalar
quantity, the quasi-static fault moment Mf (see Pollard and Segall, 1987, p. 302):

Mf = GAD = GMg = GDLH, (10.6)

where G is the shear modulus of the surrounding rock mass (where G =
E/[2(1 – ν2)]), A is the surface area of the fault as defined by its shape (length L
times height H), and D is the average (relative) displacement across the fault. Mf

has units of MJ (joules × 106) for values of modulus in 106 Pa and L, H, and D in
meters. The quasi-static fault moment represents the total energy consumed by the
rock mass in producing the fault displacements within the region.

The work done by faulting, as recorded in the measured fault displacements, Wf,
is the sum of the quasi-static fault moments for all faults in a region:

Wf =
N∑

i=1

(
Mf

)
i
, (10.7)

where Mf i is the quasi-static moment for each fault and N is the total number
of faults in the region. The work also has units of energy (MJ) or, equivalently,
106 N m. Wf does not explicitly depend on the size of the deforming region that
contains the faults, and it also neglects the generally much smaller contributions of
processes such as fault formation. Although there are some implicit relationships
between the quantities in Equations (10.6) and (10.7) and region size (e.g., A may
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be limited by stratal or crustal thickness (Scholz and Cowie, 1990; Westaway, 1994;
see also Figures 10.10c and 10.13), and D and G may depend on scale and driving
stress (Cowie and Scholz, 1992b; Schultz et al., 2006), the total work done by
faulting (Equation (10.7)) represents a convenient method for quantifying the role
of faulting in lithospheric deformation.

Fault strain is a tensor quantity, with components such as normal and shear strain
in various directions. For example, the total strain accommodated by a population
of normal faults will have a component of extensional normal strain, perpendicular
to the average strike of the faults (their “extension direction”), another component
of extensional normal strain parallel to the fault strike (which will be small for
most cases; e.g., Krantz, 1988), and a component of contractional normal strain
in the vertical direction, corresponding to crustal thinning (e.g., Wilkins et al.,
2002). Similarly, a thrust fault population will have a component of contractional
normal strain perpendicular to the average strike of the faults (their shortening or
“vergence” direction), another component of contractional normal strain parallel
to the fault strike, and a component of extensional normal strain in the vertical
direction, corresponding to crustal thickening (e.g., Schultz, 2000b).

The desired components of the strain tensor can be obtained by using either of
two methods. First, all the information needed for Equation (10.6) – the geometric
fault moment – can be specified, along with fault dip, fault strike, and displacement
rake for each fault. The component of interest can be obtained by solving Kostrov’s
(1974) equation

εkl = 1

2V

N∑
i=1

(
Mf

)
i
, (10.8)

as outlined by Aki and Richards (1980, pp. 117–118) and which as been used
extensively in seismotectonics and structural geology (e.g., Molnar, 1983; Scholz
and Cowie, 1990; Westaway, 1992; Scholz, 1997; Scholz, 2002, pp. 306–309; see
also Wilkins et al., 2002; Schultz, 2003a,b; Knapmeyer et al., 2006; Dimitrova et al.,
2006, for applications to planetary fault populations). Alternatively, measurements
along a traverse can be taken, corrected explicitly for fault strike and rake, and
then substituted into a simpler set of strain equations that already have the dip
correction incorporated into them (e.g., Scholz, 1997). This second, simpler method
for obtaining the horizontal normal strain perpendicular to the average strike of
a set of faults, which is probably the most important and widely used quantity
in planetary fault population studies, is outlined next, although both methods will
produce the same results.
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The strike correction, for normal or thrust faults, is the component of Dmax in a
particular horizontal direction (e.g., Priest, 1993, pp. 96–97; Peacock and Sander-
son, 1993). This is obtained by calculating the component of fault displacement Ds

along the direction of interest, such as a traverse line (such as one perpendicular to
the average strike of a set of faults), by using

Ds = Dmax |cos (�ψ)| , (10.9)

in which �ψ = (strike of fault ψ minus the strike of traverse ψT). The component
of horizontal displacement along the traverse direction is given by

Ds,d = Dmax |cos (�ψ)| cos δ, (10.10)

which includes the dip correction (given by the last term in Equation (10.10)).
The other correction that must be made to the displacement data is to reduce

the value of Dmax to an average value of displacement for the fault. The average
displacement D is used in fault-set inversions for paleostresses (e.g., Marrett and
Allmendinger, 1990; Angelier, 1994), as well as for fault-related strain (e.g., Scholz
and Cowie, 1990; Scholz, 1997). The average displacement D = κDmax, where
κ is a fraction of the maximum displacement Dmax, depending on the specific
displacement distribution along the fault. Scholz and Cowie (1990) assumed a
value of κ = 0.5. Dawers et al. (1993) obtained values of κ for small normal faults
in Bishop Tuff of 0.61; Moore and Schultz (1999) found values of κ between
0.3 and 0.7 for normal faults from Canyonlands National Park. A fault having a
linear displacement profile has κ = 0.5, whereas one with an ideal elliptical profile
(assuming LEFM conditions) has κ = 0.7854.

Using these three corrections to Dmax, the horizontal normal strain due to a
particular fault can be calculated. The horizontal normal strain εn is Mg normalized
by the appropriate dimension of the faulted region having thickness T, horizontal
area A, and volume V = TA. For “small” faults (e.g., Scholz and Cowie, 1990;
Scholz, 1997) (Figure 10.17), Hi < T/sin δi; for “large” faults, Hi = T/sin δi = H0,
so the horizontal normal strain (assuming constant fault dip angles) is obtained
from Kostrov’s equation (8) explicitly as (e.g., Scholz, 1997)

εn = sin 2δ

2V

N∑
i=1

[DiLiHi]

εn = sin 2δ

2AT

N∑
i=1

[
DiLi

T

sin δ

]
.

(10.11)

The first of Equation (10.11) is for small faults, the second is the approximate
limiting value for large faults. “Large” faults in a population, as discussed in this
section, are considered to be vertically restricted; “small” faults in a population
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Figure 10.17. (a) Geometric moment and (b) contractional horizontal normal strain
(shown as absolute values) calculated for thrust faults within the Amenthes Rupes
population of eastern Mars (after Schultz, 2003b).

are unrestricted (Figure 10.10c). Using the trigonometric substitution sin 2δ =
2 sin δ cos δ and collecting terms, the horizontal normal strain is written as

εn = sin δ cos δ

V

N∑
i=1

[DiLiHi]

εn = cos δ

A

N∑
i=1

[DiLi],

(10.12)

in which δ is fault dip angle and D is the average displacement on a particular fault
(using Equation (10.8) and the correction for average displacement from Dmax);
again, the first of Equation (10.12) is for small faults, the second is for large faults.
The sign of D must be specified for these equations, using D > 0 for normal faults
and D < 0 for thrust faults. Using this convention, extensional normal strain will
be positive and contractional normal will be negative.

In these equations, Mf is calculated for the component of the complete moment
tensor for the population in the horizontal plane (i.e., the planetary surface) and
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normal to fault strike (e.g., Aki and Richards, 1980, pp. 117–118; Scholz, 1997).
These equations are thus defined for normal or thrust faults, with rakes of 90◦,
and provide the horizontal normal strain (extension for normal faults, contraction
for thrust faults) accommodated by the fault population perpendicular to its strike
and in the horizontal plane. Analogous equations can be defined for the shear
strain accommodated in the horizontal plane by a population of strike-slip faults,
although this fault type is comparatively rare on planetary surfaces except for Earth
and Europa.

The vertical normal strain associated with dip-slip faulting is given by (Aki
and Richards, 1980, pp. 117–118)

εv = −sin δ cos δ

V

N∑
i=1

[DiLiHi]

εv = −cos δ

A

N∑
i=1

[DiLi]

(10.13)

(the first expression of Equation (10.13) is again for small faults, the second is the
approximate limiting value for large faults). Note the sign change relative to the
horizontal fault-normal strain: this is the “odd axis” strain of Krantz (1988, 1989;
see Figure 10.2). For normal faulting, this strain component quantifies the amount
of lithospheric thinning, whereas for thrust faulting, the amount of thickening of
the faulted section.

Direct calculation of the horizontal normal strain due to dip-slip faulting in any
dataset by using Equation (10.12) provides a straightforward measure of the exten-
sional or contractional strain associated by a tectonic event. Similarly, the vertical
normal strain (thinning or thickening) of a faulted section can be obtained easily
from the same set of measurements. As an example, the moments and contrac-
tional horizontal normal strain for the Amenthes Rupes thrust fault population in
eastern Mars were calculated from the MOLA topography (Figure 10.15; Schultz,
2003b; Grott et al., 2006). The figure reveals the incremental increases in both
quantities due to each fault, as well as the dominant effect of the largest faults in
the population.

6 Challenges and future work

Future advances in the study of planetary fault populations can be made through
a number of techniques, including the use of high-resolution topography. Digital
elevation models (DEMs) derived from stereo observations, and to some extent pho-
toclinometry, have the potential to reveal a wealth of information on the geometry
and slip distributions of faults. DEMs with postings of one to tens of meters spacing
can be constructed from Mars from imagery acquired by the Mars Orbiter Camera,
High Resolution Stereo Camera, Context imager and High Resolution Imaging
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Science Experiment (HiRISE) camera (Kirk et al., 2003; Neukum et al., 2004;
Williams et al., 2004; Jaumann et al., 2005; Kronberg et al., 2007). While the pub-
lic availability of preprocessed DEMs is currently limited, the stereo image data are
widely available through NASA’s Planetary Data System (http://pds.jpl.nasa.gov)
and processing of these image data into DEMs can be achieved with standard
software (Albertz et al., 2005; Kirk et al., 2007).

The potential insight that can be gained from high-resolution DEMs of fault pop-
ulation is well worth the effort of processing these data. Although much work has
been accomplished from study of fault-related topography measured by photocli-
nometry, radar, and MOLA data, analysis of DEMs based on more recent datasets
will help to extend the current state of knowledge. Significantly, high-resolution
DEMs can help to quantify the geometries and slip distributions of planetary faults
that are as short as a few kilometers in length (e.g., Okubo et al., 2008b; Polit
et al., 2009), and help to extend current understanding of populations of faults at
comparable length scales (e.g., Figure 10.10b). High-resolution DEMs can also
help to resolve key spatial details (such as fault-tip displacements and cross-cutting
relationships) of the longer faults that have been previously examined in lower
resolution planetary datasets. Images having high spatial resolution from HiRISE,
for example, are themselves useful for planetary tectonic studies as they are reveal-
ing, for the first time, joints (Okubo and McEwen, 2007) and deformation bands
(Okubo et al., 2008a) on Mars.

Quantification of the geometries and displacements of planetary fault popula-
tions can reveal significant insight into the evolution of planetary surfaces. Measure-
ments of fault-plane dip angles reveal effective fault frictional strengths (Equation
(10.2)), providing a means of inferring crustal properties. Further, the sense of fault
displacement provides insight into the causative stress state (Figure 10.2). Together,
fault dip angle and displacement characteristics can provide important constraints,
such as crustal strength and magnitudes of stress and strain in 3-D, for the time
span over which a particular fault population was active. In this way, analyses of
planetary fault populations of different spatial and temporal distributions will be an
important source of boundary conditions for geodynamic models of lithospheric
evolution (Grott and Breuer, 2008), as well as interpretations of the geologic history
of planetary surfaces.

Acknowledgements

Reviews by Steve Wojtal and Ken Tanaka improved the clarity and flow of the
chapter. RAS was supported by grants from NASA’s Planetary Geology and Geo-
physics Program and NASA’s Mars Data Analysis Program. DM was supported
by grants from CNRS/INSU’s Programme National de Planétologie.



P1: aaa Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK632-10 CUUK632-Watters ISBN: 978 0 521 76573 2 June 26, 2009 21:33

Fault populations 497

References

Abercrombie, R. W. and Ekström, G. (2001). Earthquake slip on oceanic transform faults.
Nature, 410, 74–76.

Ackermann, R. V., Schlische, R. W., and Withjack, M. O. (2001). The geometric
and statistical evolution of normal fault systems: An experimental study of the
effects of mechanical layer thickness on scaling laws. J. Struct. Geol., 23,
1803–1819.

Aki, K. and Richards, P. G. (1980). Quantitative Seismology: Theory and Methods. Vol. I.
San Francisco: W. H. Freeman.

Albertz, J., Dorninger, P., Dorrer, E., Ebner, H., Gehrke, S., Giese, B., Gwinner, K.,
Heipke, C., Howington-Kraus, E., Kirk, R. L., Lehmann, H., Mayer, H., Muller, J.-P.,
Oberst, J., Ostrovskiy, A., Renter, J., Reznik, S., Schmidt, R., Scholten, F., Spiegel,
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Gudmundsson, A. and Bäckström, K. (1991). Structure and development of the
Sveeinagja graben, Northeast Iceland. Tectonophys., 200, 111–125.

Gupta, A. and Scholz, C. H. (2000a). A model of normal fault interaction based on
observations and theory. J. Struct. Geol., 22, 865–879.

Gupta, A. and Scholz, C. H. (2000b). Brittle strain regime transition in the Afar
depression: Implications for fault growth and seafloor spreading. Geology, 28,
1078–1090.

Hanna, J. C. and Phillips, R. J. (2006). Tectonic pressurization of aquifers in the formation
of Mangala and Athabasca Valles, Mars. J. Geophys. Res., 111, E03003, doi:
10.1029/2005JE002546.

Harris, R. A. (1998). Introduction to special section: stress triggers, stress shadows, and
implications. J. Geophys. Res., 103, 24 347–24 358.

Hatheway, A. W. and Kiersch, G. A. (1989). Engineering properties of rock. In Practical
Handbook of Physical Properties of Rocks and Minerals, ed. R. S. Carmichael, Boca
Raton, Fl: CRC Press, pp. 672–715.

Hauber, E. and Kronberg, P. (2005). The large Thaumasia graben on Mars: Is it a rift? J.
Geophys. Res., 110, E07003, 10.1029/2005JE002407.

Hoek, E. (1983). Strength of jointed rock masses. Géotechnique, 33, 187–223.
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Mége, D., Cook, A. C., Garel, E., Lagabrielle, Y., and Cormier, M.-H. (2003). Volcanic
rifting at Martian graben. J. Geophys. Res., 108, 5044, doi:10.1029/2002JE001852.

Molnar, P. (1983). Average regional strain due to slip on numerous faults of different
orientations. J. Geophys. Res., 88, 6430–6432.

Moore, J. M. and Schultz, R. A. (1999). Processes of faulting in jointed rocks of
Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 111, 808–822.

Muehlberger, W. R. (1974). Structural history of southeastern Mare Serenitatis and
adjacent highlands. Proc. Lunar Sci. Conf., 5, 101–110.

Neuffer, D. P. and Schultz, R. A. (2006). Mechanisms of slope failure in Valles Marineris,
Mars. Q. J. Eng. Geol. Hydrogeol., 39, 227–240.

Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head, J. W., Basilevsky, A. T.,
Ivanov, B. A., Werner, S. C., van Gasselt, S., Murray, J. B., McCord, T., and the
HRSC Co-Investigator Team (2004). Recent and episodic volcanic and glacial
activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432,
971–979.

Nicol, A., Watterson, J., Walsh, J. J., and Childs, C. (1996). The shapes, major axis
orientations and displacement patterns of fault surfaces. J. Struct. Geol., 18, 235–248.

Nimmo, F. and Schenk, P. (2006). Normal faulting on Europa: Implications for ice shell
properties. J. Struct. Geol., 28, 2194–2203.
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